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1. INTRODUCTION AND NGTATION

Let n and g be given natural numbers such thatn + 1 =g > 0 {(n > O}
Further, let 7 = [0, 1], and let 4 denote an arbitrary but fixed partition
of the interval I! 0 = x5 << xy < =" < X,y < x, = 1. By Sp(2g — 1. 4}
we denote the space of natural spline functions of degree 2q — 1; thus
seSp(2g — 1, 4) iff:

(i) in each interval [x,;,x] (f =1,2,.,#) s coincides with an
algebraic polynomial of degree at most 2g — 1,
@iy seC¥20, 1],
(i) sY0) =sD) =0(/ =¢q,9+ 1,....2¢ — 2).

It is known (see, e.g., [1]) that for given real numbers f; (¢ =0, 1,..., #)
there exists exactly one s € Sp(2g — 1, 4) interpolating the data f;:

s(x;) = f; (i=0,1,.,8 (.0

{we may assume that f; = f(x,), where f € C[0, 11). Every such spline function
may be written in the following way:

S0 = Y s (e,

where s5;,€8p(2g — 1, ), s(x;) =38, (,j =9, L,..,n). The functions s,
are the so-called fundamental spline functions. Consider the operator 72
defined by

L) = 3 f0) six) (fe €O, 1D, (L2

i=0

* This paper was completed while the author was visiting at the State University of
New York at Stony Brook.
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136 E. NEUMAN

It is obvious that L2*~' is a linear, bounded, and idempotent operator with
domain C[0, 1] and range Sp(2g — 1, 4); thus L2 is a projection. We have
the elementary but important inequality

If— LYYl < (@ 4 [| L) dist(f, Sp(2g — 1, 4)),
where || - ||, stands for the sup-norm in the interval I, and

| L3t = sup 1L e (feClo, 1]).

From the above inequality it follows that the information on the size of
the norm of the projection L2 is important. Some results on the norm
of the above projection are known in the periodic case, i.e., when conditions
(iii) are changed by the following s90) = s@(1) (j =0, 1,...,2¢ — 2),
but the function f in (1.2) is a periodic function such that f(0) = f(1)
(see [5], [10-11], [13-17]).

In Section 2 some lemmas are given. In Section 3 the cubic case (g = 2)
is investigated. Estimations from above for || L,%|| (for arbitrary knots),
and from below for || L,3] (for equidistant knots) are given. In the final
section a theorem is given in which the quantity || L% || is estimated from
above (in the case of equidistant knots).

2. SoME LEMMAS

We define the sequence {d;} in the following way: d; =0, d, = 1,
di+1 = 4dz - dl'__l (i = 0, 1,...).

LEMMA 2.1. For the numbers d; defined as above the following inequalities
hold:

QR+ 3d, <dyy <4d;, (F=0,1,..). @1
Proof. Solving the above difference equation we obtain
d; = [(3 — 2B3)V/5(2 — 3134 + (3 + 203)VH(2 + 3'2)(6 = a; + b; ,
where a; = (3 — 2(3)'/%)(2 — 3/%){/6. Hence

diy = a2 — 3) + b2 + 3'%) = 2d; + 3(d, — 2a,)
=@+ 34— 23 e > (2 + 34,

since a; << 0. The second inequality in (2.1) is obvious. [|
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Let 851 = Bio = Bin = Binn = 0, and

Igz‘j = (“I)Hi d]’—ld —z'—1/dn—1 {J < i})
= (_‘ 1)j+i dz‘~1 n~i——1/dn—1 (j = i):
Gj=41L2.,n—1) 2.2

LemMa 2.2.  If the numbers my" are such that

. ; ; R o
mP + 4”75'2) + ’".7('1«21 = 6n%(8;,0.s — &5 + 810,

{2.3)
m((,“ = mff) =0 (i=01l.,nj=12.,n—1)}
then
m? = (=1Y* 6nd,_;,id, (i =0),
= (= 1YY 36ndd;_dy i qldn s (<),
= —b6n*(d; _od,_i_y + 2d;_ydp_iy + diydn_i9)dyy
(j=ii=12..,8—1),
= (— 1Y 361%d;_\d,yj1/dpns (G >,
—m®,  (i=n). (2.4)

Proof. 1t is known (see, e.g., [12]) that a matrix of the above system
of linear equations (2.3) possesses an inverse matrix with entries given by
(2.2). Hence, and from (2.3), we obtain

mj(-i) = 6’12(Bj,1'—1 - Biz‘ + Bi.zli)

and further, in virtue of (2.2), we obtain (2.4). §

LEMMA 2.3. Let the knots x; be equidistant {x;, = ijn; i =0, 1,..., n}.
Ifg=2and xe[x,_,x](j=1,2,..,n) then

sgn s/(x) = (—1)"* (<D,
— (=D (),
(i=01,..,mj=12,..8. 25
Proof. If xe[x;4,x;] then the fundamental cubic spline function
s:(x) may be written in the following way:
s{x) = 8,41 — 1) + Syt
+ A1 — 0 = (1= 0] + mO@® — nfen’,  (2.6)
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where ¢ == n(x — x;_;). The proof of the above equality in (2.5) will be
divided into three cases.

Case 1°. |i—j| > 1. Let i = 0. From (2.6) and (2.4) we have
so(x) = (—1Pl(t'— 2 dpy + ¢+ D dpjqd t(1 — 1)y .

By virtue of Lemma 2.1 it follows that the expression in the square brackets
is negative for 0 <C 7 <{ 1. Hence sgn sy(x) == (—1)*! for xe[x;_;, x;].
Quite similarly we can prove (2.5) for i > 0.

Case 2. j=i+1(=0,l1,.,n—1). By virtue of (2.6) we have the
following expression for the fundamental spline function s,(x) (x € [x;1 , x;]):

5:6) = (I — {1 + [mP@? — 26) — mP(2 + )6n.

From (2.4) it follows that m{® < 0, m{); > 0. Hence a coefficient before
t3 in the last expression is a positive. For i > 0 s/(x) vanish in x;_;, Xy,
and on the right of x;,; . Thus s;(x) > 0 for x € [x;, X419).

Case 3°. j=1i(i = 1,2,..., n). In this case we have
s:(%) = 1 + [mP(—1% + 3t — 2) + mP@? — 1)]/6nd.

Let i = 2,3,..,n — 1. From (2.4) we obain m}’, > 0, m¥) < 0. Hence
s4x) vanish in the points x;,, , x;_; and on the left of x,_, . Finally s(x) > 0
if xe(x;_;,x;]. Similarly we can prove that s;(x) > 0 if xe(x,, x;] and
() >0if xe(x,_y,x.] B

3. CuBic CasE
Now we introduce some additional notation. Let #&; = x; — x;4
(.] - 1’ 2)"'7 n)9 h = Maxy<n hi H h = minl<i<n hi s Mn = h/h’ )\J' - h]'—!—l/
hi+hiy), pi=1—XG=12,.,0—1), m =s5"(x) (j=0,1,..,n),

where s € Sp(3, 4).
The following theorem holds

THEOREM 3.1. For arbitrary knots x; (i = 0, 1,..., n),
IL3|| <1+ 3M2A

Proof. The above defined numbers m; satisfied the so-called consistency
relations (see, e.g., [1])
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6 fin — S /i — fia
iy -+ 2my - Ay = By s ( /11_+1 ) = o : )
3 3 J 7

G=12,..,n—1;,my =n, =0).

Py
=
-

Nawr

Using a standard diagonal dominance argument to the above system (3.1}
we obtain

max | m;| < 6w(f, h)/k, (3.2)

I<is<n—1

where w(-, '} denotes usual mudulus of continuity. For xex; ;, x;]1 the
spline function s(x) has the form

s() =fial =+ fit + = ’ ~myal(l — 0F — (L — D) + me® — 1),
where t = (x — x;_;)/h; . Hence, and from (3.2), we obtain

| sG] < 1 filo + EM2e( 1, B). 3.3

For the function fe C[0, 1], and such that || /i, < 1, the obvious inequality
w{f, B} < 2 holds. Hence, and from (3.3), we obtain the desired inequality
in the thesis of the above theorem. §

CoroLLARY 3.1. For equidistant knots we have || L2 < §.

Now some estimations from below for i| L2 |} will be given in the case of
equidistant knots. Let

A = Y sl (xed
=0

denote the so-called Lebesgue function for the projection L% It is known
that || 7271 | = || A2} ||, . Now we give the explicit form for the function
A3(x) {(xel) in the case when kunots x; are equidistant. By virtue of (2.6}
and (2.5} we have for x e [x;_;, x;],

n i—1 n
Ax) = Y s = Y (=1 s(x) + 3 (1P sy
=0 i=0

=i

1 Y O 0 + mPD )]

=0

i

+ Y (=D P Cix) + mP DL

=i
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where

Cx) =[(1 — 2 — (1 —)]j6n?,  Dyx) = (#* — t)/6n*
(¢t =nlx—x;4);i=12..,n). (34

For x e [x;_; , x;] we have Cy(x) << 0, Dy(x) < 0. Let

— Z (— 1)i+l+1 m(z) 4 Z (_1)z'+z m(l_)1 ,
=i
L (3.5
ﬁi‘.n _ Z (_1)i+l+1 mzl) + z ( )H—l ).
1=0

The Lebesgue function 4,%x) may be written in terms «; , and f;, in the
following way:

An3(x) = 1 + ai.nci(x) + ﬁi,nDi(x) (x € [xi—l ? xz]; l = 19 23"-’ n)' (3‘6)

The numbers o; , and fB;, may be expressed by the numbers d, . Thus by
virtue of (2.4) we have

2 i~3
Opm = ;nl [(1 + 6 Z dz) Ay F di_gdy i + 2d; ody -+ di ody ;4
n— 1=0
n—i—1
(g e
G.7N
6n? n—i—2
an = - d, . [(1 + 6 z dz) diy + di—zdﬂ—i-—l + 2di—1dn—i—1
n-1 L\ =0

i-2
+ iy — (] + 6 Z dl) dn—i—l] i=12,..,n).
=0

THEOREM 3.2. Let x; = iln (i = 0, 1,..., n). Then

lLJH/'yn Jor n=2m+1,
m=12.),
> 39, for n =2m,

where

3 2j—3—k
Yo =1 + 55— (o141 — daj_z:1) |6 z dy + d91—2+k + dyjgir + 1 s
4d'n—1

=0

k=0 for n=4—1 (=12,
=—1  for n=4j—3 (j=2,3,.),
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.‘

=] + = 37 —
i' 25—2+k
X |Gy — o) ( 1+6 Y d;) gyl da,~a+k)]
=0
k=20 for n =4j, G=1,2.)

=-—1 for n=4j— 2.
Additionaily || L®|| = 1.

Proof. From (3.4) and (3.6)-3.7) it follows that A,3(x) = 4,°(1 — x)
{x el). Thus investigation of the function 4,3(x) may be done only for
xei6, 1/21.

Assume # 1s odd. Let

1o. n=4j—1 (j=1,2,.). Then putting { = 2j in (3.6} and (3.7),
we obtain

o

QXajgj—1 = d.
n—1

2§—-3
(1 + 6 Z dz) Aoy ~+ dajgtlyyq —+ 2ds;_oth; s + dij s

{1 + 5’:2:51,)5127 2]

USlng the ObViOU.S equality dgj_gdzj__l _‘I"‘ ngj_?_dgjfl - Sd_;‘zl_z = (d2f~}, -
Ay o)da; o -+ dii_o) we obtain finally

@
)

‘ . 27—3
27,47 1::—5{ (d’Jl_ ’JZ)(GZd*aJ’—‘LFZ“_ﬁE) 0,

Bajsj1 7 S2ijo1 - (3.8
From (3.6}, (3.4), and (3.8) it follows that the function A,3(x) is stric 'rsy

concave in the interval (xy_p,Xy), and hence max, <ecw 1,300 =
27— o
A1) =y, .

200 n=4j— 3(j=2,3,.) In this case we put / = 21‘ — 1. Similarly
calculations as abov give the desired result. For » = { from (2.3} and

{3.5)~(3.6) it follows that A,3(x) = 1. Hence || L3 = L
Assume 2 is even. Let

3. n=4j—2(j=1,2,..). Putting { = 2/ — | in {3.6} we obtain by
virtue of (3.7}
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6n? 23
251,452 = a_. (dyjy — daj_s) (1 + 3 Z dz) - 21323‘—1.45-2 >
n—1 =0
12n2
Boi1.45-2 = — ?lr—l-dzi—z(dzj—z + dy;_3) < 0.

Now we can prove that ay;_; 4, << 0. The equivalent inequality to the above
is the following:

2§—-3

(s = dy-) (146 %, i) > oy (dos + oo
1=0
Let L denote the left hand of the above inequality. Further we have
2j—3 2j-3
L =2Qdy; 5 — do;_3) (1 +6 > a’l) > 12d,5.5 (1 +6 ) dl).
1=0 =0

The last inequality follows from the inequality dy;_; > 3.5d,;_; (see
Lemma 2.1). Further, by virtue of 4d;_; > d;, we obtain

2j—3 27—3
L > 3d2]'_2 (1 —l— 6 z dl) = 4d2j_2 (.75 + 4.5 Z dl)

=0 =0

> Ady;_o(dpj_3 + daj_p).

Thus the function 4,3(x) is strictly concave in the interval (xp;_s, Xpi3)-
Putting 3, = A,3(1/2(xp;_s + X5;_;)) We obtain the desired result.

4o. n=4j(j=1,2,.). In this case we take { = 2j, and define 5, =
A3(12(x051 + X25)-

Now we give some numerical values for the quantities y, and 8, for
small values of n:

ys =1 ';’—0 — 13, ys =1 % — 1.4736...,
S % e 15281, oy =1 % — 1.5433..,
S = 172 = L1875, 8, =1 z—g ~ 1.3883...

b =1 ISB%TIG — 1.5000..., 8 —1 %%%2 — 1.5357....

Conjecture. For all odd n (n > 3) y, = || L,?||. For all natural n (n > 0)
I L2 < (1 4 3(31%)/4 = 1.5490... .
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4. QuinTic CASE

Now we assume that the knots x; are equidistant. Let s = s%{(x}
i=01,.,n j=0,1,2,3,4), where se8p(5, 4). First we prove the
following

LEmMMA 4.1.  For the equidistant knots x; the following estimations hold:

23 1 34 PR A
max | s/ <= w( —) max |5/ | <5 nPw ~
2, EEES 3" J; nl’ oxign | Vi < 3" ﬁ\f’ n/;’
max |s7 | < 40w ( f l) max |s/V| < 80n'e (£, 1),

o<gi<n ' Ot *nl’ o<i<n ' ¢! "

Proof. Let A = (a;;) be a symmetric and five-diagonal matrix (n — 2} X
{n —2) and such that a; =66 (G =1,2,..n—2), a,;414 =26 (=
L2, n—3), ¢s0=1 (=12, —4), a; =0 for |i—jl >2
(¢, j=1,2,.,nr—2). Further, let the numbers y; (f = 1,2,...,n — 2) be
the solution of the following system of linear equations:

n—2
N aiys = 243, (i=12,.,n—2), “.n

=1

where f; = s(x;) (i =0, 1,..., n). Using the standard diagonal dominance
argument we obtain || A |, = 1/12 (here || - ||, stands for the infinity norm
of the square matrix). Further, the obvious inequality |2u34%; ;| <
8niw(/f, 1/n) holds. From the two above inequalities we obtain

| 2 3 A
max _ | v; | ggnw(f, —)e 4.2)

1<i<n—2

Some simple connections between the quantities y; and sy’ were given by
Herriot and Reinsch [8], namely,

v
S

= 60n(y; — vi_) (G=1,2..0—1), (43)
S;‘” = 30(’}/2 + ’}’1?—1) (I = 15 27---5 1 — —{)7 (44)
” 3 7 1
sy = n?d¥, 4 + 3n Yie + Tyica — Tys — Vo)
(i=1,2..,12—1)
” 1 rd
sy = n2d%fy — I 27y, + v2)s 4.5)
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" 1
Sp = nzAan—z + ﬂ ('Yn—s + 27')’11—-2),

, n 1
§; =5 (fis1 — fi) — el (Yice + 19950 + 19y + vipd)
G=1,2.n— 1),

/ 1
s = ndfy — 5 2%, -+ 5= @571 + 7). 46)

, n 1
Sp = nAfn—l + z A2fn~2 - Zn_z ('yn—B '{_ 25711—2)

(we assume here that y_; = y, = y,_y = vy, = 0). From relations (4.2)-(4.6)
the desired inequalities of this lemma follow. [

THEOREM 4.1. For equidistant knots we have || L, || = 21/4.

The proof (in which Lemma 4.1 is used) is quite similar to the that of

[17, Theorem 2]. For this reason it is omitted.

" w
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