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1. INTRODUCTION AND NOTATIOc-r

Let nand q be given natural numbers such that n + 1 ;?: q > 0 (n > 0).
Further, let I = [0, IJ, and let Ll denote an arbitrary but fixed partition
of the interval I: °= X o < Xl < '" < X n - 1 < X n = 1. By Sp(2q - 1. Ll)
we denote the space of natural spline functions of degree 2q - 1; thus
s E Sp(2q - 1, Ll) iff:

(i) in each interval [X;-l, x;J (i = 1, 2'00" n) s coincides with an
algebraic polynomial of degree at most 2q - 1,

(ii) S E C2H[0, IJ,

(iii) s(j)(O) = sU}(I) = °(j = q, q + 1'00" 2q - 2).

It is known (see, e.g., [1]) that for given real numbers /; (i = 0, 1'00" n)
there exists exactly one s E Sp(2q - 1, Ll) interpolating the data .f;:

seX;) = /; (i = 0,1, ... , 1l) eU)

(we may assume that!,. = f(x;), where f E qo, 1D. Every such spline function
may be written in the following way:

n

sex) = L IisJx)
i=O

(x E 1),

where Si E Sp(2q - 1, Ll), siC";) = Ou (i,j = 0, 1'00" n). The functions 5!

are the so-called fundamental spline junctions. Consider the operator L~Q-l

defined by
n

L;,q-y(x) =, L f(x;) s;(x)
i=O

(f E qQ, 1]). (1.2)
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It is obvious that L';.q-l is a linear, bounded, and idempotent operator with
domain C[O, 1] and range Sp(2q - 1, J); thus L';.q-l is a projection. We have
the elementary but important inequality

Ilf - L~q-:~fII", :::;;; (1 + II L~q-lll) dist(j, Sp(2q - 1, J»,

where II . 1100 stands for the sup-norm in the interval I, and

II L;.q-l II = sup II L;.q-Ylloo
Ilfl!",<1

(f E C[O, 1]).

From the above inequality it follows that the information on the size of
the norm of the projection L;q-l is important. Some results on the norm
of the above projection are known in the periodic case, i.e., when conditions
(iii) are changed by the following Sli)O) = s(j)(1) (j = 0, 1,..., 2q - 2),
but the function f in (1.2) is a periodic function such that f(O) = f(1)
(see [5], [10-11], [13-17]).

In Section 2 some lemmas are given. In Section 3 the cubic case (q = 2)
is investigated. Estimations from above for II L n

3 11 (for arbitrary knots),
and from below for II L n

3 11 (for equidistant knots) are given. In the final
section a theorem is given in which the quantity II L n

5 11 is estimated from
above (in the case of equidistant knots).

2. SOME LEMMAS

We define the sequence {di} in the following way: d_1 = 0, do = 1,
di+1 = 4di - di- 1 (i = 0, 1,...).

LEMMA 2.1. For the numbers di defined as above the following inequalities
hold:

(2 + 31 / 2) di < di+1 :::;;; 4di (i = 0,1,...). (2.1)

Proof. Solving the above difference equation we obtain

di = [(3 - 2(3)1/2)(2 - 31/ 2)i + (3 + 2(3)1/2)(2 + 31/ 2)i]/6 = ai + bi ,

where ai = (3 - 2(3)1/2)(2 - 31 / 2)i/6. Hence

di+1 = a;(2 - 31/ 2) + b;(2 + 31 / 2) = 2di + 31/ 2(di - 2ai)

= (2 + 31 / 2) di - 2(3)1/2 ai > (2 + 31 / 2di ),

since ai < 0. The second inequality in (2.1) is obvious. I



SPLINE PROJECTIONS

Let ,8j ,-1 = (3io = (3in = (3i,n+1 = 0, and

137

(3ii = (_I)1+i di- 1dn-i-l/dn-l

= (_I)Hi d;-ldn-i-1/dn-1

(j ~ f),

U ~ i),

(f,) = 1,2, ... , n - 1), (2,2)

LEMMA 2,2. If the numbers m;i) are such that

(i) + 4 (0 + (i) 6 2(" ~ + x )m i - 1 m i miH = n 0i+1.; - OJ>: vi-I.; ,

m~i) = m~;) = ° (i = 0, 1,... , n;) = 1,2,... , n - 1),

then

m)O = (-1 )Hl 6n2dn_i-l/dn_l U = 0),

= (-1)1+i+1 36n2di_1dn_i-l/dn_1 (j < f),

= -6n2(di _2dn_;_1 + 2d;_ldn_;_1 + d;-ldn-;-2)/dn- 1

(j = f; f = 1,2,... ,11 - 1),

(2.3)

(j > n,
(;)

= l11 n-i (i = 11). (2.4)

Proof It is known (see, e.g., [12]) that a matrix of the above system
of linear equations (2.3) possesses an inverse matrix with entries given by
(2.2). Hence, and from (2.3), we obtain

and further, in virtue of (2.2), we obtain (2.4). I

LEMMA 2.3. Let the knots X; be equidistant (x; = f/n; f = 0, 1, ... , n).
If q = 2 and x E [Xi-I' Xi] (j = 1,2,... , n) then

sgn s;(x) = (_I)i+i (j ,::;:; 0,
= (-1);+i+1 (j > f),

U = 0, 1,... , n; j = 1,2,... ,11). (2.5)

Proof If x E [Xi-I, Xi] then the fundamental cubic spline function
Si(X) may be written in the following way:

s;(x) = 8i - U (1 - t) + 8;/

+ {mj~l[(1 - t)3 - (1 - t)J + 111;0(t3 - t)}/6n\ (2.6)
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where t = 11(X - Xj-l)' The proof of the above equality in (2.5) will be
divided into three cases.

Case 1°. I i - j I > 1. Let i = 0. From (2.6) and (2.4) we have

so(X) = (-I)i[(t- 2) dn_j + (t + I) dn-i-l] t(l - t)ldn- 1 .

By virtue of Lemma 2.1 it follows that the expression in the square brackets
is negative for °:::;; t :::;; I. Hence sgn so(x) = (-I)i+l for x E [Xj-l , Xj].

Quite similarly we can prove (2.5) for i > 0.

Case 2°. j = i + I (i = 0, 1,...,11 - I). By virtue of (2.6) we have the
following expression for the fundamental spline function Si(X) (x E [Xj-l , Xj]):

From (2.4) it follows that m;i) < 0, m~~l > 0. Hence a coefficient before
t 3 in the last expression is a positive. For i > °s;(x) vanish in Xi-I' Xi+1'

and on the right of Xi+1 • Thus s;(x) > °for x E [Xi' Xi+1)'

Case 3°. j = i (i = 1,2,... ,11). In this case we have

Let i = 2, 3,... , 11 - 1. From (2.4) we obain m~~l > 0, m~i) < 0. Hence
Si(X) vanish in the points Xi+1 , Xi-l and on the left of Xi-I' Finally s;(x) > °
if x E (XH , Xi]. Similarly we can prove that SI(X) > °if x E (xo ,Xl] and
sn(x) > °if x E (Xn-l , Xn ]. I

3. CUBIC CASE

Now we introduce some additional notation. Let h; = X; - Xj-l

(j = 1,2,... ,11), h = maxlo(Kn hj , h = minlo(jo(n hj , M n = hlh, /0..; = hj+ll
(h j + hj +1)' fLj = 1 - Aj (j = 1,2,... , n - 1), 111j = s"(Xj) (j = 0, 1,... , n),
where S E Sp(3, .d).

The following theorem holds

THEOREM 3.1. For arbitrary knots Xi (i = 0, 1,... , n),

Proof The above defined numbers 111j satisfied the so-called consistency
relations (see, e.g., [1])
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(j = 1,2,... , n - 1; 1110 = l1i n = 0). (3.1)

Using a standard diagonal dominance argument to the above system (3.1)
we obtain

max I tnj I ,::;;: 6w(f h)/b2
,

l~J~n-l
(3.2)

where w(·, -) denotes usual mudulus of continuity. For x E [Xj-l ,Xj] the
spline function sex) has the form

I 2
sex) = .ff-10 - t) + fit + -t {mj-1[(l - t)3 - (l - t)] + mlt3 - t)),

where t = (x - xj_1)/hj . Hence, and from (3.2), we obtain

Is(x)I ,::;;: Ilfil", + 1M/w(f, 11). (3.3)

For the functionfE C[Q, I], and such that Ilfll", ,::;;: 1, the obvious inequality
w(f, h) ,::;;: 2 holds. Hence, and from (3.3), we obtain the desired inequality
in the thesis of the above theorem. I

COROLLARY 3.1. For equidistant knots we have II L n3:1 ,::;;: ~ .

Now some estimations from below for il L,,311 will be given in the case of
equidistant knots. Let

11.

A;q-1(X) = L Islr)i
z~o

(x E I)

denote the so-called Lebesgue function for the projection L;,Q-1. It is known
that 11 L;,Q-1 'I = IIA;,Q-1 II", . Now we give the explicit form for the function
A n3(X) (x E1) in the case when knots Xi are equidistant. By virtue of (2.6)
and (2.5) we have for x E [Xi-I, x;],

n i-l n

.!ln
3(x) = L 1sz(x)1 = L (_I)i+l+1 sb) -+- L (-l)i+l SI(X)

l=O l=O l=i

i-I

= 1 + L (-1 )i-H+l [m~~lCi(x) -r- In jilD ;(x)]
z~o

+ f (_l)i~l [m)~lCi(X) ~- m)llD;(x)].
l=i
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where

C;(x) = [(I - t)3 - (1 - t)]/6n2, D;(x) = (f3 - t)/6n2

(t = n(x - Xi-I); i = 1,2,... , n). (3.4)

For x E [Xi-I, Xi] we have C;(x) ~ 0, Di(x) ~ O. Let

i-1 n
(X. = '" (_I)i+!+1m~!) + '" (_I)i+l m~!)l.n LJ 2-1 ~ z-l ,

!~O l=i
(3.5)

i-I n

f3i." = L (_I)i+!+lm~!) + I (_I)i+! m~!).
I~O !~i

The Lebesgue function An3(X) may be written in terms (Xi." and f3;,n in the
following way:

(x E [X;-l , xtl; i = 1,2,... , n). (3.6)

The numbers !X;,n and (3i,n may be expressed by the numbers dlr. . Thus by
virtue of (2.4) we have

(3.7)

(i = 1, 2, ... , 11).

(m = 1,2,...),
;?;: 8n for n = 2m,

THEOREM 3.2. Let Xi = i/n (i = 0, 1,..., n). Then

il Ln3!1 ;?;: Yn for 11 = 2m + I,

where

3 ( 2i-3-/;; )
Yn = I + -4d (d2i- I +k - d2i- 2+k) 6 I d! + d2i- 2+k + d2i- 3+k + 1 ,

n-l l=O J

k=O

= -1

for n =c= 4j - 1 (j = I, 2, ),

for n = 4j - 3 (j = 2, 3, ),
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k=O

= -1

Additionally II L I 3 Ii .-: 1.

for 11 = 4j,

for 11 = 4j - 2.
(j = 1,2,... ).

Proof From (3.4) and (3.6)-(3.7) it follows that A,,3(X) = .tInS(l - x)
(x E 1). Thus investigation of the function A,,3(X) may be done only for
x E [0, 1/2].

Assume It is odd. Let

1°. n = 4} - 1 (j = 1,2,...). Then putting i = 2j in (3.6) and (3.7),
we obtain

Using the obvious equality d2j-3d2j-1 +- 2db - 2dzH - 5d;;_2 = (d2J - 1 ­

dV-2)(d2i-2 +- c(,j-s) we obtain finally

(3.8)

From (3.6), (3.4), and (3.8) it follows that the function A,,3(X) is strictly
concave in the interval (X2j-1, X 2i), and hence max"'i_l<xcCx

C
•
j

L1n
S(x) =

L1}(lj2) ~-~ Yfl •

2°. n = 4j - 3 (j = 2,3, ...). In this case we put i = 2j - j. Similarly
calculations as above give the desired result. For 12 = 1 from (2.3) and
(3.5)-(3.6) it follows that AI 3(X) == 1. Hence II LIS j! = L

Assume J) is even. Let

3°. n = 4} - 2 (j = 1,2'00')' Putting i = 2} - 1 in (3.6) we obtain by
virtue of (3.7)
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Now we can prove that (X2i-1,4i-2 <; O. The equivalent inequality to the above
is the following:

Let L denote the left hand of the above inequality. Further we have

The last inequality follows from the inequality d2j- 2 > 3.5d2j_3 (see
Lemma 2.1). Further, by virtue of 4di - 1 ;> di , we obtain

Thus the function An3(X) is strictly concave in the interval (X2j-2, X 2j-1)'

Putting On - A n3(l/2(x2i_2 + X2i-1)) we obtain the desired result.

4°. n = 4j (j = 1,2,...). In this case we take i = 2j, and define On ­
A n3(l/2(x2j_1 + X 2j)). I

Now we give some numerical values for the quantities Yn and On for
small values of n:

3
Y3 = 1 10 = 1.3,

75
Y7 = I 142 = 1.5281...,

3
O2 = 1 16 = 1.1875,

521
06 = 1 1040 = 1.5009... ,

9
Ys = 1 19 = 1.4736... ,

2448
Y9 = 1 4505 = 1.5433... ,

29
04 = 1 68 = 1.3883... ,

23283
Os = 1 43546 = 1.5357....

Conjecture. For all odd n (n > 3) Yn = II L n3 11. For all natural n (n > 0)
II L n

3 11 < (1 + 3(31/2)/4 = 1.5490....
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4. QUINTIC CASE
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Now we assume that the knots Xi are equidistant. Let Sii) = s(j)(x;)
(i = 0, 1, ... , n; j = 0, 1,2,3,4), where s EO Sp(5, Ll). First we prove the
following

LEMMA 4.1. For the equidistant knots Xi the following estimations hold:

23 1
max [s; I ~ -3 nw (I, -'I)'

O::;::;;;i~n

max I s':' I ~ 40n3w (I, _/1
1
),

O~i~n I ~

1 "1--- 342 {r1'1m!ix Si ~ -3 11 w \_ , - ,
O':=:;;z::;:':;;;ll , III

I IV I --- 80' 4 (f 1)max ,Si I ~ n w \J' - .
O~l~n \ n

Proof Let A = (aij) be a symmetric and five-diagonal matrix (n - 2) X

(n - 2) and such that aii = 66 (i = 1,2,... , n - 2), ai,HI = 26 (i =
1,2'00" n - 3), ai,i+2 = 1 (i = 1,2'00" n - 4), au = ° for I i - j! > 2
(i,j = 1,2"00' n - 2). Further, let the numbers Y1 (j = 1,2,... , n - 2) be
the solution of the following system of linear equations:

,,-2

I aijYi = 2n3Ll~_I
j=I

(i = 1, 2, ... , n - 2), (4.1)

where /; = S(Xi) (i = 0, 1'00" n). Using the standard diagonal dominance
argument we obtain II A-III", = 1/12 (here II . II", stands for the infinity norm
of the square matrix). Further, the obvious inequality I 2n3L:lS/;_I I ~
8n3w(f, l/n) holds. From the two above inequalities we obtain

max I Yi I ~ ~3 n3w (I, !).
1~i~n-2 n (4.2)

Some simple connections between the quantities Yi and s~j) were given by
Herriot and Reinsch [8], namely,

S~V = 60n(Yi - Yi-l)

sf' = 30(Yi + Yi-l)

(i == 1, 2, .. " n - 1),

(i = 1, 2, ... , 11 - 1),

(4.3)

(4.4)

," _ 2 ,121' + 1 ( + 7 7 \
,}i - n L.I Ji-l 2n Yi-2 Yi-l - Yi - Yi+V

(i = 1, 2" .. , 11 - 1),

(4.5)
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s~ = n2Ll:l"n_2 + 2
1
n (Yn-3 + 27Yn_2),

s~ = ~ (ii+1 - ii-1) - 4~12 (Yi-2 + 19Yi_1 + 19Yi + Yi+1)

(i = 1, 2, ... , n - 1),

s~ = nLl/o - ~ Ll2Jo + 4~2 (25Y1 + Y2), (4.6)

s~ = I1Llln- 1 + ~ Ll:l"n-2 - 4~12 (Yn-3 + 25Yn-2)

(we assume here that Y-1 = Yo = Yn-1 = Yn = 0). From relations (4.2)-(4.6)
the desired inequalities of this lemma follow. I

THEOREM 4.1. For equidistant knots we have II L n
5

11 = 21/4.

The proof (in which Lemma 4.1 is used) is quite similar to the that of
[17, Theorem 2]. For this reason it is omitted.
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